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Notes on How to Numerically Cal-
culate the Maximum Lyapunov
Exponent

These notes, primarily for my own reference,
briefly describe how my programs calculate
the maximum Lyapunov exponent.  There is
nothing extraordinary in how I do it – the
method is described in ample detail by well-
known references, e.g. Wolf  et al. (1985,
Physica D 16, 285) and Benettin et al.
(1976, Phys. Rev. A 14, 2338).

Consider two orbits, a "reference" orbit and
a "test" orbit, separated at time t0 by a small
phase space distance d0.  We will use the test
orbit as a means of calculating the value of
the maximum Lyapunov exponent.  Under
evolution of the equations of motion, the
two orbits may (or may not) separate.  If the
motion is chaotic, the orbits will, by defini-
tion, separate at an exponential rate.  The
maximum Lyapunov exponent λ is a measure
of this rate of separation:

(1)k =
td∞
lim 1

t − t0
ln

d(t)
d0

Hence, in the limit of infinite time,

(2)k =
td∞
lim 1

t − t0
ln

d(t)
d0

In practice, we cannot afford the luxury of
infinitely long integrations, so we instead
calculate the instantaneous maximum Lyapu-
nov exponent

(3)k(t) = 1
t − t0

ln
d(t)
d0

and, ideally, wait long enough for λ(t) to
settle to approximately its asymptotic value,
if indeed it is non zero for the orbit of
1

interest.  A simple method of calculating λ(t)
is shown in section 1.  Another practical
problem is that, for chaotic orbits, the dis-
tance between reference and test particles,
d(t), quickly saturates.  Hence we must peri-
odically renormalize the orbit separation.
This is shown in section 2.  Section 3 pre-
sents the derivation of eq. (7) in more detail.

1.  Exponent Calculation

We will leave the reference orbit alone and
rescale the test orbit whenever the separa-
tion d(t) has passed beyond a threshold value
D.  It is important that D be set small
enough that it is still in the linear regime
(i.e., the regime in which the linearized equa-
tions of motion are an accurate description).
Define a rescaling parameter:

(4)a1 h
d(t1)
d(t0)

where t1 is the time at which .  Thend(t) m D
we can write

(5)k1 = 1
t1 − t0

ln d1
d0

= 1
t1 − t0

ln a1

where  and .  At thiski h k(ti) di h d(ti)
point, the test orbit is then rescaled, as
shown in section 2.  Similarly, for successive
threshold crossings and subsequent rescal-
ings, we have
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(6)

k2 = 1
t2 − t0

ln d2 $ a1
d0

= 1
t2 − t0

ln(a1 $ a2 )

k3 = 1
t3 − t0

ln d3 $ a2 $ a1
d0

= 1
t3 − t0

ln(a1 $ a2 $ a3 )

§

and so on.  The multiplicative factors  

 are derived in section 3, ina1, a1 $ a2, ¢
case it is not intuitively obvious.  We there-
fore conclude that the instantaneous Lyapu-
nov exponent is 

(7)kn = 1
tn − t0 S

i=1

n
ln ai

where we have defined

(8)ai h
d(ti)
d(t0)

As long as the rescalings take place in the
linear regime, this construction is valid.
Notice that, in a computer, only the accumu-
lating sum of the natural log of the αi need
be stored.  In addition, the time intervals
need not be evenly spaced.

2.  Renormalization of the Test Orbit.

The rescaling of the test particle orbit is per-
formed on the test - reference phase space
distance vector.  Whenever the distance d(t)
becomes greater than or equal to the thresh-
old D, we scale the test particle distance
from the reference particle by the factor 1/αi,
maintaining the current relative orientation
between the two particles in phase space.
Write the reference and test particle phase
2

space vectors as
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Define .  Then the adjustment toqq h r − R
the test particle phase space coordinates at
time ti is

(10)ri b Ri +
qq i
ai

Alternatively, one could write the equivalent
expression

(11)ri b ri − ai − 1
ai $ qq i

Eq. (10) is slightly less expensive to calcu-
late than eq. (11).  All we are doing is res-
caling the distance d(t), 

(12)d(ti) b
d(ti)
ai

in the appropriate direction in phase space.

I have found that  and d0 = 10−6 D = 10−4

work well in practice.  The figure below  
shows the instantaneous Lyapunov exponent
for a chaotic restricted three-body orbit,
with several values of d0 ranging from 10-5 to
10-15, with a rescaling threshold of 10-4.  One
can see that values of d0 in the range 10-5 to
10-8 are adequate.  Smaller than this invites
numerical trouble due to the finite word size
of the machine.  

I have also found that any difference
between using the full phase space distance
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(13)x2 + y2 + z2 + vx
2 + vy

2 + vz
2

and using only the configuration space
distance

(14)x2 + y2 + z2

is indiscernible.

3.  Explanation of summation

In this section, for completeness, I derive the
multiplicative factors in the distances in the
logarithms of eq. (7) and the equations lead-
ing up to it.  Consider eq. (1).  At a time t1, 
3
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(15)d1 = d0 ek1t1

Upon rescaling,

(16)d1 b d0ek1t1

a1

At the next rescaling time t2, 

(17)d2 = d1 ek1$(t2−t1 )

where d1 is the rescaled value (i.e., d0).
Inserting eq. (16) for d1, we have

(18)d2 = d0ek2t2

a1
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where we have assumed the increment in

time is small so that .  Upon rescal-k1 l k2

ing, eq. (18) becomes

(19)d2 b d2
a2

where, using eq. (18),

(20)a2 = d2
d0

= ek2t2

a1
4

Hence, from eq. (20), we have

(21)k2 = 1
t2

ln(a1a2 )

which is eq. (6).  Extending this process fur-
ther, we conclude eq. (7).

Marc A. Murison
U.S. Naval Observatory


